#8 - 9020번 골드바흐의 추측
문제 1보다 큰 자연수 중에서 1과 자기 자신을 제외한 약수가 없는 자연수를 소수라고 한다. 예를 들어, 5는 1과 5를 제외한 약수가 없기 때문에 소수이다. 하지만, 6은 6 = 2 × 3 이기 때문에 소수가 아니다. 골드바흐의 추측은 유명한 정수론의 미해결 문제로, 2보다 큰 모든 짝수는 두 소수의 합으로 나타낼 수 있다는 것이다. 이러한 수를 골드바흐 수라고 한다. 또, 짝수를 두 소수의 합으로 나타내는 표현을 그 수의 골드바흐 파티션이라고 한다. 예를 들면, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 3 + 11, 14 = 7 + 7이다. 10000보다 작거나 같은 모든 짝수 n에 대한 골드바흐 파티션은 존재한다. 2보다 큰 짝수..
#7 - 17298번 오큰수
문제 크기가 N인 수열 A = A1, A2, ..., AN이 있다. 수열의 각 원소 Ai에 대해서 오큰수 NGE(i)를 구하려고 한다. Ai의 오큰수는 오른쪽에 있으면서 Ai보다 큰 수 중에서 가장 왼쪽에 있는 수를 의미한다. 그러한 수가 없는 경우에 오큰수는 -1이다. 예를 들어, A = [3, 5, 2, 7]인 경우 NGE(1) = 5, NGE(2) = 7, NGE(3) = 7, NGE(4) = -1이다. A = [9, 5, 4, 8]인 경우에는 NGE(1) = -1, NGE(2) = 8, NGE(3) = 8, NGE(4) = -1이다. 입력 첫째 줄에 수열 A의 크기 N (1 ≤ N ≤ 1,000,000)이 주어진다. 둘째에 수열 A의 원소 A1, A2, ..., AN (1 ≤ Ai ≤ 1,000,..
#6 - 1712번 손익분기점
문제 월드전자는 노트북을 제조하고 판매하는 회사이다. 노트북 판매 대수에 상관없이 매년 임대료, 재산세, 보험료, 급여 등 A만원의 고정 비용이 들며, 한 대의 노트북을 생산하는 데에는 재료비와 인건비 등 총 B만원의 가변 비용이 든다고 한다. 예를 들어 A=1,000, B=70이라고 하자. 이 경우 노트북을 한 대 생산하는 데는 총 1,070만원이 들며, 열 대 생산하는 데는 총 1,700만원이 든다. 노트북 가격이 C만원으로 책정되었다고 한다. 일반적으로 생산 대수를 늘려 가다 보면 어느 순간 총 수입(판매비용)이 총 비용(=고정비용+가변비용)보다 많아지게 된다. 최초로 총 수입이 총 비용보다 많아져 이익이 발생하는 지점을 손익분기점(BREAK-EVEN POINT)이라고 한다. A, B, C가 주어졌..